Advanced Tunning

Query Plan

SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'

Catalog
clustered unclustered unclustered
Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

clustered unclustered

Dept(did, dname, floor,mgr)

500 records
50 pages

[

+ ename

Q

dname = 'Toy'

¥ 3

Emp.did = Dept.did

X—Q

_—

Emp Dept

dname = 'Toy'

X

/ q.did = Dept.did

Dept Emp

Total: 37 1/0s

4 reads + 1 writes
Read temp T2 ename

1+ 3 (idx) + 20 (ptr chase) reads

+ 4 writes N Emp.did = Dept.did
Index Nested-Loop _Ioin/‘/ \
G Emp

dname = 'Toy'
3 reads + 1 writes }

Access: Index(dname)
Dept

Query Optimization

Heuristics / Rules

— Rewrite the query to remove (guessed) inefficiencies.

— Examples: always do selections first or push down
projections as early as possible.

— These techniques may need to examine catalog, but they do
not need to examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick
the one with the lowest cost.

PREDICATE PUSHDOWN

[W / -

Emp

N i i 5 dname = 'Toy'

B Emp.did = Dept.did
S

Dept Emp Dept

TC e (O spame. oy (Dept 24 Emp)) m T (Emp 4 O, 7o (Dept))

REPLACE CARTESIAN PRODUCT

G °

[
~ Emp.did = Dept.did - I
X

/4 \ N Emp.did = Dept.did
S ~ N

Emp Dept Emp Dept

¢ (GDept.did Emp.did (Dept X Emp)) m £ " (Emp NEmp.dxd Dept.did Dcpt)

PROJECTION PUSHDOWN

T[ename

7;[ename K - DL

/ q.did = Dept.did

/ @;dldi DEpt did nename,did
\

Emp Emp

Tc]: np.ename (N did Emp) m TcEmp.ename (X did (Tcename. did Elnp))

Sam—m——

Query Optimization

Heuristics / Rules

— Rewrite the query to remove (guessed) inefficiencies.

— Examples: always do selections first or push down
projections as early as possible.

— These techniques may need to examine catalog, but they do
not need to examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick
the one with the lowest cost.

SINGLE-RELATION QUERY PLANNING

Pick the best access method.

— Sequential Scan
— Binary Search (clustered indexes)
— Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.

B-Tree

B-Tree is a type of multilevel index

from another standpoint: it's a type of balanced tree

Invented in 1972 by Boeing engineers R. Bayer and E. McCreight

A B-tree can be thought of as a generalized binary search tree
multiple branches rather than just L or R

Trees are always perfectly balanced

Some wasted space in the nodes is tolerated

The big idea: When a node is full, it splits.

middle value is propagated upward

If we're lucky, there’s room for it in the level above

two new nodes are at same level as original node

Height of tree increases only when the root splits

A very nice property 2 6

This is what keeps the tree perfectly balanced

Recommended: split only “on the way down”

On deletion: two adjacent nodes recombine if both are < h

B-Tree Insert and Delete? B-Tree
https:.//www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html

B-Tree Concepts

Each node contains

tree (index node) pointers, and

key values (with record or page pointers)
Given a key K and the two node pointers L and R
around it

All key values pointed to by L are < K

All key values pointed to by R are > K

B+ Tree

Two big differences:

Original B-trees had record pointers in all of the index nodes;
B+ trees only in leaf nodes

Given a key K and the two node pointers L and R around it
All key values pointed to by L are < K
All key values pointed to by R are >= K
B+ tree data pages are linked together to form a sequential
file

B+ Tree Index Files

Main disadvantage of the index-sequential file organization is
that performance degrades as the file grows both for index
lookups and sequential scans.

B+ tree index structure is most widely used of several index
structures that maintain their efficiency despite insertion and
deletion of data. i 4

ree
Painter \

5

Disk File 2 i} 4

hash
keys function

oo
= 01

hi Seith ———
Jehn Sei —//;752 i
03
Lisa Smith .

13
Sandra D —_—
andra Dee . o

15

Can we avoid the 10 operations that the result from
accessing the index file?
Hashing offers a wauy.

It also provides a way of constructing indices (which
need nor be sequential).

buckets

521-8976

521-1234

521-8655

Summary

Feature

Structure

Suitable for

Ordering

Range queries

Data storage

Traversal

Hash

Hash table buckets

Exact match queries

No

No

Bucket chains

No ordering

B-tree

Balanced tree, data in

internal & leaves

Exact & range queries

Yes

Yes

Internal nodes + leaves

In-order traversal

B+-tree

Balanced tree, data only in leaves, leaves
linked

Exact & range queries

Yes

More efficient

Leaves only

Fast sequential via linked leaves

Index Creation in Postgres

CREATE [UNIQUE] INDEX [CONCURRENTLY] [[IF NOT EXISTS] name]

ON [ONLY] table_name

[USINGmethod] btree, hash, gist, spgist, gin, and brin

({ column_name | (expression) }

[COLLATE collation] [opclass [(opclass_parameter = value [,...]1)]]1[ASC | DESC] [NULLS { FIRST | LAST}][, ...]
)

[INCLUDE (column_name [, ...])]

[WITH (storage_parameter [= value] [, ...])] [TABLESPACE tablespace_name]

[WHERE predicate]

Loggding in Postgres

SHOW config_file;
logging_collector = on
log_directory ='log’
log_filename = 'postgresqgl-%Y-%m-%d_%H%M%S.log’
log_statement = "all’
log_duration = on
log_connections = on
log_disconnections = on
pg_ctl restart
Path in docker, ubuntu, ... cd /var/lib/postgresqgl/data/log
Path in windows: C:\Program Files\PostgreSQL\16\data\log

Data Storage in Postgres

Find the path of table:
SELECT relname, relfilenode, pg relation filepath (oid)

FROM pg class
WHERE relname LIKE 'students’;

Let's jump into the data and see what we can uncover! :D

SELECT *

SELECT *
FROM STCOT

WHERE COID="40384" AND GRADE > 20;

FROM STT

WHERE STNC=0010010017’;

Unique on STNC
O< c0ID=40384 AND GRADE>20 }SCR

Index on COID

O<GRADE>20 >(0< coip=40384 >SCR)

SELECT *

FROM STCOT

WHERE COID=40384" OR GRADE > 20;
Index on COID. What happened?

SELECT count(*)
SELECT FROM STT

FROM STT WHERE BIRTH_DATE > “1370-01-01" AND BIRTH_DATE < “1377-01-01’;

B Tree Index on BIRTH DARE?
WHERE STMIJR = ‘phys’ -

ORDER BY BIRTH_DATE;

CREATE TABLE STPhones (CREATE TABLE STPhones (

STID char(10), STID char(10),
Phone char(11), Phone char(11),
Primary Key (STID, Phone) Primary Key (Phone, STID)

SELECT Phone from STT WHERE STID="444’;

CREATE TABLE STCOT (

teay

PRIMARY KEY (STID, COID, TR, YR),
)

SELECT COID, TR, YR, GRADE
FROM STCOT
WHERE STID = 444;

CREATE TABLE STCOT (

seny

PRIMARY KEY (STID, COID, TR, YR),
o)

SELECT COID, TR, YR, GRADE
FROM STCOT
WHERE STID = 444;

CREATE TABLE STCOT (

viey

PRIMARY KEY (COID, STID, TR, YR),

)

SELECT COID, TR, YR, GRADE
FROM STCOT
WHERE STID = 444;

CREATE TABLE STCOT (

ey

PRIMARY KEY (STID, YR, TR, COID),
)

SELECT COID, TR, YR, GRADE
FROM STCOT

WHERE STID =444 AND TR=1 AND YR = 1400;

	Default Section
	Slide 1
	Slide 2: Query Plan
	Slide 3: Query Optimization
	Slide 4: PREDICATE PUSHDOWN
	Slide 5: REPLACE CARTESIAN PRODUCT
	Slide 6: PROJECTION PUSHDOWN
	Slide 7: Query Optimization
	Slide 8: SINGLE-RELATION QUERY PLANNING
	Slide 9: B-Tree
	Slide 10: B-Tree Concepts
	Slide 11: B+ Tree
	Slide 12: B+ Tree Index Files
	Slide 13: Hashing
	Slide 14: Summary
	Slide 15: Index Creation in Postgres
	Slide 16: Logging in Postgres
	Slide 17: Data Storage in Postgres
	Slide 19: Examples
	Slide 20: Examples
	Slide 21: Examples
	Slide 22: Examples
	Slide 23: Examples

