
CE384: Database Design
Maryam Ramezani
Sharif University of Technology
maryam.ramezani@sharif.edu

Advanced Tunning

CE384: Database Design Maryam Ramezani 2

CE384: Database Design Maryam Ramezani 3

CE384: Database Design Maryam Ramezani 4

CE384: Database Design Maryam Ramezani 5

CE384: Database Design Maryam Ramezani 6

CE384: Database Design Maryam Ramezani 7

CE384: Database Design Maryam Ramezani 8

CE384: Database Design Maryam Ramezani

 B-Tree is a type of multilevel index
 from another standpoint: it's a type of balanced tree
 Invented in 1972 by Boeing engineers R. Bayer and E. McCreight
 A B-tree can be thought of as a generalized binary search tree

▪ multiple branches rather than just L or R
 Trees are always perfectly balanced
 Some wasted space in the nodes is tolerated
 The big idea: When a node is full, it splits.
 middle value is propagated upward
 If we’re lucky, there’s room for it in the level above
 two new nodes are at same level as original node
 Height of tree increases only when the root splits
 A very nice property
 This is what keeps the tree perfectly balanced
 Recommended: split only “on the way down”
 On deletion: two adjacent nodes recombine if both are < half full
 B-Tree Insert and Delete?

▪ https://www.cs.usfca.edu/~galles/visualization/BTree.html

9

https://www.cs.usfca.edu/~galles/visualization/BTree.html

10 CE384:

Databas

 Each node contains
▪ tree (index node) pointers, and
▪ key values (with record or page pointers)

 Given a key K and the two node pointers L and R
around it
▪ All key values pointed to by L are < K
▪ All key values pointed to by R are > K

Maryam Ramezani

11 CE384:

Databas

 Two big differences:
▪ Original B-trees had record pointers in all of the index nodes;

B+ trees only in leaf nodes
▪ Given a key K and the two node pointers L and R around it

▪ All key values pointed to by L are < K
▪ All key values pointed to by R are >= K

▪ B+ tree data pages are linked together to form a sequential
file

Maryam Ramezani

CE384: Database Design Maryam Ramezani 12

 Main disadvantage of the index-sequential file organization is
that performance degrades as the file grows both for index
lookups and sequential scans.

 B+ tree index structure is most widely used of several index
structures that maintain their efficiency despite insertion and
deletion of data.

CE384: Database Design Maryam Ramezani 13

 Can we avoid the IO operations that the result from
accessing the index file?

 Hashing offers a way.
 It also provides a way of constructing indices (which

need nor be sequential).

CE384: Database Design Maryam Ramezani 14

CE384: Database Design Maryam Ramezani 15

 SHOW config_file;
▪ logging_collector = on
▪ log_directory = 'log'
▪ log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'
▪ log_statement = 'all'
▪ log_duration = on
▪ log_connections = on
▪ log_disconnections = on

 pg_ctl restart
▪ Path in docker, ubuntu, …: cd /var/lib/postgresql/data/log
▪ Path in windows: C:\Program Files\PostgreSQL\16\data\log

CE384: Database Design Maryam Ramezani 16

 Find the path of table:
SELECT relname, relfilenode, pg_relation_filepath(oid)

FROM pg_class

WHERE relname LIKE 'students’;

▪ Let's jump into the data and see what we can uncover! :D

CE384: Database Design Maryam Ramezani 17

CE384: Database Design Maryam Ramezani

Unique on STNC

Index on COID

19

CE384: Database Design Maryam Ramezani

Index on COID. What happened?

B Tree Index on BIRTH_DARE?

20

CE384: Database Design Maryam Ramezani 21

CE384: Database Design Maryam Ramezani 22

CE384: Database Design Maryam Ramezani 23

	Default Section
	Slide 1
	Slide 2: Query Plan
	Slide 3: Query Optimization
	Slide 4: PREDICATE PUSHDOWN
	Slide 5: REPLACE CARTESIAN PRODUCT
	Slide 6: PROJECTION PUSHDOWN
	Slide 7: Query Optimization
	Slide 8: SINGLE-RELATION QUERY PLANNING
	Slide 9: B-Tree
	Slide 10: B-Tree Concepts
	Slide 11: B+ Tree
	Slide 12: B+ Tree Index Files
	Slide 13: Hashing
	Slide 14: Summary
	Slide 15: Index Creation in Postgres
	Slide 16: Logging in Postgres
	Slide 17: Data Storage in Postgres
	Slide 19: Examples
	Slide 20: Examples
	Slide 21: Examples
	Slide 22: Examples
	Slide 23: Examples

