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Query Optimization

Heuristics / Rules

— Rewrite the query to remove (guessed) inefficiencies.

— Examples: always do selections first or push down
projections as early as possible.

— These techniques may need to examine catalog, but they do
not need to examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick
the one with the lowest cost.
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REPLACE CARTESIAN PRODUCT
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Query Optimization

Heuristics / Rules

— Rewrite the query to remove (guessed) inefficiencies.

— Examples: always do selections first or push down
projections as early as possible.

— These techniques may need to examine catalog, but they do
not need to examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick
the one with the lowest cost.




SINGLE-RELATION QUERY PLANNING

Pick the best access method.

— Sequential Scan
— Binary Search (clustered indexes)
— Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.



B-Tree

B-Tree is a type of multilevel index

from another standpoint: it's a type of balanced tree

Invented in 1972 by Boeing engineers R. Bayer and E. McCreight

A B-tree can be thought of as a generalized binary search tree
multiple branches rather than just L or R

Trees are always perfectly balanced

Some wasted space in the nodes is tolerated

The big idea: When a node is full, it splits.

middle value is propagated upward

If we're lucky, there’s room for it in the level above

two new nodes are at same level as original node

Height of tree increases only when the root splits

A very nice property 2 6

This is what keeps the tree perfectly balanced

Recommended: split only “on the way down”

On deletion: two adjacent nodes recombine if both are < h

B-Tree Insert and Delete? B-Tree
https:.//www.cs.usfca.edu/~galles/visualization/BTree.html



https://www.cs.usfca.edu/~galles/visualization/BTree.html

B-Tree Concepts

Each node contains

tree (index node) pointers, and

key values (with record or page pointers)
Given a key K and the two node pointers L and R
around it

All key values pointed to by L are < K

All key values pointed to by R are > K



B+ Tree

Two big differences:

Original B-trees had record pointers in all of the index nodes;
B+ trees only in leaf nodes

Given a key K and the two node pointers L and R around it
All key values pointed to by L are < K
All key values pointed to by R are >= K
B+ tree data pages are linked together to form a sequential
file



B+ Tree Index Files

Main disadvantage of the index-sequential file organization is
that performance degrades as the file grows both for index
lookups and sequential scans.

B+ tree index structure is most widely used of several index
structures that maintain their efficiency despite insertion and
deletion of data. i 4
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Can we avoid the 10 operations that the result from
accessing the index file?
Hashing offers a wauy.

It also provides a way of constructing indices (which
need nor be sequential).
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Summary

Feature

Structure

Suitable for

Ordering

Range queries

Data storage

Traversal

Hash

Hash table buckets

Exact match queries

No

No

Bucket chains

No ordering

B-tree

Balanced tree, data in

internal & leaves

Exact & range queries

Yes

Yes

Internal nodes + leaves

In-order traversal

B+-tree

Balanced tree, data only in leaves, leaves
linked

Exact & range queries

Yes

More efficient

Leaves only

Fast sequential via linked leaves



Index Creation in Postgres

CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ [ IF NOT EXISTS ] name ]

ON [ ONLY ] table_name

[ USINGmethod ] btree, hash, gist, spgist, gin, and brin

({ column_name | ( expression ) }

[ COLLATE collation ] [ opclass [ ( opclass_parameter = value [,...]1)]]1[ ASC | DESC] [ NULLS { FIRST | LAST}][, ...]
)

[ INCLUDE ( column_name [, ...] )]

[ WITH ( storage_parameter [= value] [, ... ] ) ] [ TABLESPACE tablespace_name ]

[ WHERE predicate ]



Loggding in Postgres

SHOW config_file;
logging_collector = on
log_directory ='log’
log_filename = 'postgresqgl-%Y-%m-%d_%H%M%S.log’
log_statement = "all’
log_duration = on
log_connections = on
log_disconnections = on
pg_ctl restart
Path in docker, ubuntu, ... cd /var/lib/postgresqgl/data/log
Path in windows: C:\Program Files\PostgreSQL\16\data\log



Data Storage in Postgres

Find the path of table:
SELECT relname, relfilenode, pg relation filepath (oid)

FROM pg class
WHERE relname LIKE 'students’;

Let's jump into the data and see what we can uncover! :D



SELECT *

SELECT *
FROM STCOT

WHERE COID="40384" AND GRADE > 20;

FROM STT

WHERE STNC=0010010017’;

Unique on STNC
O< c0ID=40384 AND GRADE>20 }SCR

Index on COID

O<GRADE>20 >(0< coip=40384 >SCR)



SELECT *

FROM STCOT

WHERE COID=40384" OR GRADE > 20;
Index on COID. What happened?

SELECT count(*)
SELECT FROM STT

FROM STT WHERE BIRTH_DATE > “1370-01-01" AND BIRTH_DATE < “1377-01-01’;

B Tree Index on BIRTH DARE?
WHERE STMIJR = ‘phys’ -

ORDER BY BIRTH_DATE;



CREATE TABLE STPhones ( CREATE TABLE STPhones (

STID char(10), STID char(10),
Phone char(11), Phone char(11),
Primary Key (STID, Phone) Primary Key (Phone, STID)

SELECT Phone from STT WHERE STID="444’;



CREATE TABLE STCOT (

teay

PRIMARY KEY (STID, COID, TR, YR),
)

SELECT COID, TR, YR, GRADE
FROM STCOT
WHERE STID = 444;



CREATE TABLE STCOT (

seny

PRIMARY KEY (STID, COID, TR, YR),
o)

SELECT COID, TR, YR, GRADE
FROM STCOT
WHERE STID = 444;

CREATE TABLE STCOT (

viey

PRIMARY KEY (COID, STID, TR, YR),

)

SELECT COID, TR, YR, GRADE
FROM STCOT
WHERE STID = 444;

CREATE TABLE STCOT (

ey

PRIMARY KEY (STID, YR, TR, COID),
)

SELECT COID, TR, YR, GRADE
FROM STCOT

WHERE STID =444 AND TR=1 AND YR = 1400;
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