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 B-Tree is a type of multilevel index
 from another standpoint: it's a type of balanced tree
 Invented in 1972 by Boeing engineers R. Bayer and E. McCreight
 A B-tree can be thought of as a generalized binary search tree

▪ multiple branches rather than just L or R
 Trees are always perfectly balanced 
 Some wasted space in the nodes is tolerated
 The big idea: When a node is full, it splits.
 middle value is propagated upward
 If we’re lucky, there’s room for it in the level above
 two new nodes are at same level as original node
 Height of tree increases only when the root splits
 A very nice property
 This is what keeps the tree perfectly balanced
 Recommended: split only “on the way down”
 On deletion: two adjacent nodes recombine if both are < half full
 B-Tree Insert and Delete?

▪ https://www.cs.usfca.edu/~galles/visualization/BTree.html
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Databas

 Each node contains 
▪ tree (index node) pointers, and
▪ key values (with record or page pointers)

 Given a key K and the two node pointers L and R 
around it
▪ All key values pointed to by L are < K
▪ All key values pointed to by R are > K
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Databas

 Two big differences:
▪ Original B-trees had record pointers in all of the index nodes; 

B+ trees only in leaf nodes
▪ Given a key K and the two node pointers L and R around it

▪ All key values pointed to by L are < K
▪ All key values pointed to by R are >= K

▪ B+ tree data pages are linked together to form a sequential 
file
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 Main disadvantage of the index-sequential file organization is 
that performance degrades as the file grows both for index 
lookups and sequential scans.

 B+ tree index structure is most widely used of several index 
structures that maintain their efficiency despite insertion and 
deletion of data.
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 Can we avoid the IO operations that the result from 
accessing the index file?

 Hashing offers a way.
 It also provides a way of constructing indices (which 

need nor be sequential).
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 SHOW config_file;
▪ logging_collector = on
▪ log_directory = 'log'             
▪ log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'
▪ log_statement = 'all'
▪ log_duration = on
▪ log_connections = on
▪ log_disconnections = on

 pg_ctl restart
▪ Path in docker, ubuntu, …: cd /var/lib/postgresql/data/log
▪ Path in windows: C:\Program Files\PostgreSQL\16\data\log
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 Find the path of table:
SELECT relname, relfilenode, pg_relation_filepath(oid)

FROM pg_class

WHERE relname LIKE 'students’;

▪ Let's jump into the data and see what we can uncover!  :D
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Unique on STNC

Index on COID
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Index on COID. What happened?

B Tree Index on BIRTH_DARE?
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